In conventional Plate Heat Exchangers (PHEs), a good heat transfer performance is usually obtained at the cost of much pumping power consumption. In order to address this dilemma, a novel Regular Hexagonal Plate Heat Exchanger (RHPHE) is proposed in this paper. Specially-shaped spherical ribs and quasi-spiral flow paths are designed on plates with the purpose of achieving a best trade-off between the heat transfer and fluid flow performance. Because of its regular hexagonal structure with 3 inlets and 3 outlets, three or at least two kinds of fluids with different temperatures can exchange heat in a single set of heat exchanger. It is an innovation that multiple fluids heat transfer in a PHE without the assistance of supplementary baffles. Numerical investigation is carried out on the RHPHE and water is the working fluid. The heat transfer and flow performance of the RHPHE in a series of working conditions are investigated. Results show that heat transfer coefficient per unit pressure drop of the RHPHE is much better than that of the widely accepted PHE with 60° chevron corrugations. Also studied is the influence of various combinations of inlet and outlet positions on heat transfer and fluid flow performance. For the thermodynamic analysis, the entropy generation caused by heat conduction under finite temperature difference and fluid friction is obtained numerically. The variation of the entropy generation number with respect to the Reynolds number is depicted, which provides reference for the future optimization design of the RHPHE.
Skip Nav Destination
2010 14th International Heat Transfer Conference
August 8–13, 2010
Washington, DC, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4939-2
PROCEEDINGS PAPER
Numerical Investigation and Thermodynamic Analysis on a Novel Regular Hexagonal Plate Heat Exchanger
Wenjing Du,
Wenjing Du
Shandong University, Jinan, Shandong, China
Search for other works by this author on:
Fei Wang,
Fei Wang
Shandong University, Jinan, Shandong, China
Search for other works by this author on:
Gongming Xin,
Gongming Xin
Shandong University, Jinan, Shandong, China
Search for other works by this author on:
Shihu Zhang,
Shihu Zhang
Shandong University, Jinan, Shandong, China
Search for other works by this author on:
Lin Cheng
Lin Cheng
Shandong University, Jinan, Shandong, China
Search for other works by this author on:
Wenjing Du
Shandong University, Jinan, Shandong, China
Fei Wang
Shandong University, Jinan, Shandong, China
Gongming Xin
Shandong University, Jinan, Shandong, China
Shihu Zhang
Shandong University, Jinan, Shandong, China
Lin Cheng
Shandong University, Jinan, Shandong, China
Paper No:
IHTC14-22245, pp. 257-263; 7 pages
Published Online:
March 1, 2011
Citation
Du, W, Wang, F, Xin, G, Zhang, S, & Cheng, L. "Numerical Investigation and Thermodynamic Analysis on a Novel Regular Hexagonal Plate Heat Exchanger." Proceedings of the 2010 14th International Heat Transfer Conference. 2010 14th International Heat Transfer Conference, Volume 4. Washington, DC, USA. August 8–13, 2010. pp. 257-263. ASME. https://doi.org/10.1115/IHTC14-22245
Download citation file:
21
Views
Related Proceedings Papers
Related Articles
Multi-Objective Optimization of Heat Exchanger Design by Entropy Generation Minimization
J. Heat Transfer (August,2010)
Design Optimization, Thermohydraulic, and Enviro-Economic Analysis of Twisted Perforated Tape Insert-Based Heat Exchanger With Nanofluid Using Computational Fluid Dynamics and Taguchi Grey Method
J. Heat Mass Transfer (January,2023)
Thermal
and Hydraulic Performance of Counterflow Microchannel Heat Exchangers With and Without
Nanofluids
J. Heat Transfer (August,2011)
Related Chapters
Hydrodynamic Mass, Natural Frequencies and Mode Shapes
Flow-Induced Vibration Handbook for Nuclear and Process Equipment
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine