Heat transfer in the rotary kiln is a complex phenomenon due to the different modes of heat transfer. In the first part of this study, the local heat transfer coefficients are analysed theoretically, to describe the heat transfer mechanisms in the cross section of the rotary kiln. Furthermore, the axial solid motion along the length of the kiln is considered in the local surfaces which exchanges the heat. A pilot plant drum of length 0.45 m and internal diameter of 0.6 m has been designed and fabricated to measure the contact heat transfer coefficient from the kiln wall to the covered solid bed. The cylinder is heated continuously by means of three electrical heaters fixed externally around the cylinder at various positions. K-type thermocouples have been used to measure the wall and solid bed temperature along the circumferential and the radial direction. Experiments are performed with various materials such as Quartz sand and Copper pellets of different size, shape and thermal conductivity. The effect of the material properties, the rotational speed (1–6 rpm) and the filling degree (10–20%) on the contact heat transfer have been studied thoroughly.

This content is only available via PDF.
You do not currently have access to this content.