The power density of electronic devices has been increasing along with the rapid technology development. Cooling of electronic systems is therefore essential in controlling the component temperature and avoiding any hot spot. Heat sinks are commonly adopted in electronics cooling together with different technologies to enhance heat transfer process. Fin-based heat sinks are commonly designed so that coolants (gas or liquid) are forced to pass through the narrow straight channel. A driving fan is then needed to overcome the viscous pressure loss and maintain the coolant flow. As part of effort to improve the heat sink performance, this study simulated the details of the flow and temperature fields of heat sinks with interrupted and staggered elliptic fins cooled by forced convection. The focus of this study lies on three scenarios: Heat transfer before the flow reaches the periodic condition in the flow direction; effect of the heat sink base surface on flow and heat transfer; and conjugate heat transfer between convection and heat conduction inside the fins. In addition, studies were also conducted on the effect of the Reynolds number. The results of this paper can help design heat sinks for electronics cooling by employing the new concept of interrupted and staggered fins.

This content is only available via PDF.
You do not currently have access to this content.