With the ever increasing heat flux from next-generation chips forced convection cooling is beginning to reach its limits within current standard heat sink capabilities. Methods of extending the air cooling capabilities prior to a transition to liquid or refrigerant-based cooling which is seen as costly and complex, have become more critical. This paper investigates the enhanced heat transfer by the addition of active components upstream of a longitudinally finned heat sink. This paper addresses piezoelectric fans for natural and forced convection environments. Experimental measurements are taken for a low powered DC fan operating at a frequency of 114Hz. For the forced convection experiments a fully ducted flow was used. The main thrust of the paper is to determine the effects of piezoelectrics in augmenting forced convection systems at hot component locations. The effects on pressure drop, thermal resistance and pumping power with the addition of the technology are presented. The paper concludes by reporting on the performance enhancement and limitations of the piezoelectric fans compared to the conventional longitudinally finned heat sink geometry.

This content is only available via PDF.
You do not currently have access to this content.