In the present paper, geometry specification in the inverse heat conduction problems (IHCP) is applied to detect the location and size of defect in a solid body. A crack or cavity is modeled as a supper-elliptic geometry whose parameters are estimated with inverse heat conduction problems. Both inverse analysis and gradient-based optimization method have been applied to an inverse algorithm that iteratively estimates the defect shape parameters. The inverse analysis is based on recording temperatures data on outer surface of solid domain that determines the objective function in the inverse algorithm with estimated and calculated temperatures. The employed gradient-based optimization method is constructed with the adjoint and sensitivity equations that are used to calculate the gradient of the objective function and the search step size, respectively. An unstructured grid is used and the computational domain is discretized with triangular elements. The finite element method (FEM) is employed to discretize the equations in analysis plus sensitivity and adjoint equations. The effects of different Biot numbers and noisy temperature data are investigated on inverse algorithm and the size and location of crack and complex cavity are calculated. Results show that the estimated shape has good agreement with exact shape of defect. The decrease of noisy data has improve the convergence rate and the increase of Biot numbers causes the estimated shape has the best accuracy in all cases.
Skip Nav Destination
2010 14th International Heat Transfer Conference
August 8–13, 2010
Washington, DC, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4938-5
PROCEEDINGS PAPER
Estimation of Location and Size of Defects in a Solid Body via Inverse Heat Conduction Problem
Hamid Fazeli,
Hamid Fazeli
Middle East Petro-Gas Company, Tehran, Iran
Search for other works by this author on:
Masoud Mirzaei,
Masoud Mirzaei
K.N.Toosi University of Technology, Tehran, Iran
Search for other works by this author on:
Pourya Forooghi
Pourya Forooghi
Middle-East Petro Gas (MPG) Company, Tehran, Iran
Search for other works by this author on:
Hamid Fazeli
Middle East Petro-Gas Company, Tehran, Iran
Masoud Mirzaei
K.N.Toosi University of Technology, Tehran, Iran
Pourya Forooghi
Middle-East Petro Gas (MPG) Company, Tehran, Iran
Paper No:
IHTC14-23075, pp. 387-396; 10 pages
Published Online:
March 1, 2011
Citation
Fazeli, H, Mirzaei, M, & Forooghi, P. "Estimation of Location and Size of Defects in a Solid Body via Inverse Heat Conduction Problem." Proceedings of the 2010 14th International Heat Transfer Conference. 2010 14th International Heat Transfer Conference, Volume 3. Washington, DC, USA. August 8–13, 2010. pp. 387-396. ASME. https://doi.org/10.1115/IHTC14-23075
Download citation file:
15
Views
Related Articles
Surface Feature Parametrization Analogous to Conductive Heat Flow
J. Comput. Inf. Sci. Eng (June,2002)
Structural Deflection's Impact in Turbine Stator Well Heat Transfer
J. Eng. Gas Turbines Power (April,2017)
An Algorithm Study on Inverse Identification of Interfacial Configuration in a Multiple Region Domain
J. Heat Transfer (February,2009)
Related Chapters
Conclusion
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Introduction
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Nonconforming H 1 -Galerkin Mixed Finite Element Method for Dual Phase Lagging Heat Conduction Equation
International Conference on Information Technology and Computer Science, 3rd (ITCS 2011)