Carbon nanotubes (CNTs) have attracted much attention in nanotechnology fields because of their unique thermal properties. The thermal conductivity of CNTs was reported to be as high as several thousand W/mK. The heat flux in CNTs can reach 109−1012 W/m2 under normal heat conduction conditions. In this paper we demonstrate that Fourier’s heat conduction law breaks down for so high heat flux. Based on a novel concept of thermomanss, which is defined as the equivalent mass of thermal energy according to Einstein’s mass-energy relation, heat conduction in CNTs can be regarded as the flow of a phonon gas governed by its mass and momentum conservation equations like in fluid mechanics. The momentum conservation equation, including driving force, inertial force and resistance terms, reduces to Fourier’s law as the heat flux is not very high and the inertial force of phonon gas is negligible with respect to the driving force. However, Fourier’s law of heat conduction no longer holds if the heat flux is very high such that the inertial force of the phonon gas is not negligible. The heat conduction behavior deviates from Fourier’s law even for steady state conditions so that the heat conduction is characterized by a non-linear relationship between the heat flux and the temperature gradient. In this case, the thermal conductivity of the CNTs can no longer be defined as the ratio of the heat flux to the temperature gradient in experiments or numerical computations. Furthermore, the ratio of the phonon gas velocity to the thermal sound speed can be defined as the thermal Mach number. Heat flow in CNTs will be choked, just like gas flows in a converging nozzle, and a temperature jump will be observed when the thermal Mach number equals or exceeds unity. In this case, the predicted temperature profile of the CNTs based on Fourier’s law is much lower than that based on the thermomass theory considering a CNT electrically heated by high-bias current flows. The intrinsic thermal conductivity can be only calculated by the present thermomass theory, rather than Fourier’s heat conduction law. The present study shows that the thermomass based theory should be applied for high flux heat conduction in CNTs where Fourier’s heat conduction law breaks down.
Skip Nav Destination
2010 14th International Heat Transfer Conference
August 8–13, 2010
Washington, DC, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4938-5
PROCEEDINGS PAPER
Mass Nature of Heat and Its Applications II: Non-Fourier Heat Conduction in Carbon Nanotubes
Bing-Yang Cao,
Bing-Yang Cao
Tsinghua University, Beijing, China
Search for other works by this author on:
Quan-Wen Hou
Quan-Wen Hou
Tsinghua University, Beijing, China
Search for other works by this author on:
Bing-Yang Cao
Tsinghua University, Beijing, China
Quan-Wen Hou
Tsinghua University, Beijing, China
Paper No:
IHTC14-22507, pp. 335-340; 6 pages
Published Online:
March 1, 2011
Citation
Cao, B, & Hou, Q. "Mass Nature of Heat and Its Applications II: Non-Fourier Heat Conduction in Carbon Nanotubes." Proceedings of the 2010 14th International Heat Transfer Conference. 2010 14th International Heat Transfer Conference, Volume 3. Washington, DC, USA. August 8–13, 2010. pp. 335-340. ASME. https://doi.org/10.1115/IHTC14-22507
Download citation file:
4
Views
Related Proceedings Papers
Related Articles
Non-Fourier Heat Conduction in Carbon Nanotubes
J. Heat Transfer (May,2012)
Thermal Wave Based on the Thermomass Model
J. Heat Transfer (July,2010)
Conjugate Thermal Transport in Gas Flow in Long Rectangular Microchannel
J. Electron. Packag (June,2011)
Related Chapters
Experimental Investigation of an Improved Thermal Response Test Equipment for Ground Source Heat Pump Systems
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Introduction
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Scalability of Abinit on BlueGene/L for Identifying the Band Structure for Nanotechnology Materials
International Conference on Advanced Computer Theory and Engineering (ICACTE 2009)