An analysis of the flow that depends of the fuel composition (natural gas) in the combustor-transition piece system, applying Computational Fluid Dynamics, is presented. The study defines the velocity and temperature profiles at the exit of the transition piece and the hot streak along the system. The variation of the composition in the fuel depends of the amount of N2 contained in the fuel, and the hot track influences on the temperature distribution at the input of the first stage of vanes and blades of the gas turbine. The study takes place in a three-dimensional model in steady state using FLUENT ® 6.3.26, applying the k-ε turbulence model and chemical equilibrium to the combustion process. The results show the influence of the transition piece geometry over the velocity and temperature profiles, principally, in the radial direction. The velocity profiles on the radial direction can be represented by six order polynomial and the temperature profile by third order polynomial. The temperature and velocity profiles keep a symmetry profile and they can be represented by six order polynomial at the circumferential direction. Knowing these profiles, it is possible to compute a more exact study of the heat transfer at vanes and blades of the first stage of the turbine to evaluate the performance and life of them. On the other hand, considering from 5% to 10% of N2 in the fuel composition, the maximum temperature is reduced in the combustion process and consequently the NOx emissions too.

This content is only available via PDF.
You do not currently have access to this content.