This paper presents an analysis of heat-transfer to SuperCritical Water (SCW) in bare vertical tubes. A large set of experimental data, obtained in Russia, was analyzed and a new heat-transfer correlation for SCW was developed. This experimental dataset was obtained within conditions similar to those for proposed SuperCritical Water-cooled nuclear Reactor (SCWR) concepts. Thus, the new correlation presented in this paper can be used for preliminary heat-transfer calculations in SCWR fuel channels. The experimental dataset was obtained for SCW flowing upward in a 4-m-long vertical bare tube. The data was collected at pressures of about 24 MPa for several combinations of wall and bulk-fluid temperatures that were below, at, or above the pseudocritical temperature. The values ranged for mass flux from 200–1500 kg/m2s, for heat flux up to 1250 kW/m2 and for inlet temperatures from 320 to 350°C. Previous studies have confirmed that there are three heat-transfer regimes for forced convective heat transfer to water flowing inside tubes at supercritical pressures: (1) Normal Heat-Transfer (NHT) regime; (2) Deteriorated Heat-Transfer (DHT) regime, characterized by lower than expected Heat Transfer Coefficients (HTCs) (i.e., higher than expected wall temperatures) than in the NHT regime; and (3) Improved Heat-Transfer (IHT) regime with higher-than-expected HTC values, and thus lower values of wall temperature within some part of a test section compared to those of the NHT regime. Also, previous studies have shown that the HTC values calculated with the Dittus-Boelter and Bishop et al. correlations deviate quite substantially from those obtained experimentally. In particular, the Dittus-Boelter correlation significantly over predicts the experimental data within the pseudocritical range. A new heat-transfer correlation for forced convective heat-transfer in the NHT regime to SCW in a bare vertical tube is presented in this paper. It has demonstrated a relatively good fit for HTC values (±25%) and for wall temperature calculations (±15%) for the analyzed dataset. This correlation can be used for supercritical water heat exchangers linked to indirect-cycle concepts and the co-generation of hydrogen, for future comparisons with other independent datasets, with bundle data, as the reference case, for the verification of computer codes for SCWR core thermalhydraulics and for the verification of scaling parameters between water and modeling fluids.
Skip Nav Destination
2010 14th International Heat Transfer Conference
August 8–13, 2010
Washington, DC, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4938-5
PROCEEDINGS PAPER
Development of a Heat-Transfer Correlation for Supercritical Water Flowing in a Vertical Bare Tube
Sarah Mokry,
Sarah Mokry
University of Ontario Institute of Technology, Oshawa, ON, Canada
Search for other works by this author on:
Amjad Farah,
Amjad Farah
University of Ontario Institute of Technology, Oshawa, ON, Canada
Search for other works by this author on:
Krysten King,
Krysten King
University of Ontario Institute of Technology, Oshawa, ON, Canada
Search for other works by this author on:
Sahil Gupta,
Sahil Gupta
University of Ontario Institute of Technology, Oshawa, ON, Canada
Search for other works by this author on:
Igor Pioro,
Igor Pioro
University of Ontario Institute of Technology, Oshawa, ON, Canada
Search for other works by this author on:
Pavel Kirillov
Pavel Kirillov
State Scientific Center of the Russian Federation, Obninsk, Russia
Search for other works by this author on:
Sarah Mokry
University of Ontario Institute of Technology, Oshawa, ON, Canada
Amjad Farah
University of Ontario Institute of Technology, Oshawa, ON, Canada
Krysten King
University of Ontario Institute of Technology, Oshawa, ON, Canada
Sahil Gupta
University of Ontario Institute of Technology, Oshawa, ON, Canada
Igor Pioro
University of Ontario Institute of Technology, Oshawa, ON, Canada
Pavel Kirillov
State Scientific Center of the Russian Federation, Obninsk, Russia
Paper No:
IHTC14-22908, pp. 191-203; 13 pages
Published Online:
March 1, 2011
Citation
Mokry, S, Farah, A, King, K, Gupta, S, Pioro, I, & Kirillov, P. "Development of a Heat-Transfer Correlation for Supercritical Water Flowing in a Vertical Bare Tube." Proceedings of the 2010 14th International Heat Transfer Conference. 2010 14th International Heat Transfer Conference, Volume 3. Washington, DC, USA. August 8–13, 2010. pp. 191-203. ASME. https://doi.org/10.1115/IHTC14-22908
Download citation file:
9
Views
0
Citations
Related Proceedings Papers
Related Articles
Experimental Investigation of Convective Heat Transfer of Supercritical Pressure Hydrocarbon Fuel in a Horizontal Section of a Rotating U-Duct
J. Heat Transfer (October,2019)
Conjugated Periodic Turbulent Forced Convection in a Parallel Plate Channel
J. Heat Transfer (February,1994)
Analytical Solution for Unsteady Heat Transfer in a Pipe
J. Heat Transfer (November,1988)
Related Chapters
Introduction
Heat Transfer & Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
Summary
Heat Transfer & Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine