Heat exchangers are usually designed in such a way that they do not operate in the transition region. This is usually due to a lack of information in this region. However, due to design constraints, energy efficiency requirements or change of operating conditions, heat exchangers are often forced to operate in this region. It is also well known that entrance disturbances influence where transition occurs. The purpose of this paper is to present experimental heat transfer and pressure drop data in the transition region for fully developed and developing flows inside smooth tubes using water as the working fluid. The use of different inlet disturbances were used to investigate its effect on transition. A tube-in-tube heat exchanger was used to perform the experiments, which ranged in Reynolds numbers from 1 000 to 20 000, with Prandtl numbers being between 4 and 6 while Grashof numbers were in the order of 105. Results showed that the type of inlet disturbance could delay transition to a Reynolds number as high as 7 000, while other inlets expedited it, confirming results of others. For heat transfer, though, it was found that transition was independent of the inlet disturbance and all commenced at the same Reynolds number, 2 000–3 000, which was attributed to secondary flow effects.

This content is only available via PDF.
You do not currently have access to this content.