In this paper, we present a circular motion of magnetohydrodynamic (MHD) flow for a heated generalized Oldroyd-B fluid. The fractional calculus approach is introduced to establish the constitutive relationship of a viscoelastic fluid. The velocity and temperature fields of the flow are described by fractional partial differential equations. Exact analytical solutions of velocity and temperature fields are obtained by using Hankel transform and Laplace transform for fractional calculus. Results for ordinary viscous flow are deduced by making the fractional order of differential tend to one and zero. It is shown that the fractional constitutive relation model is more useful than the conventional model for describing the properties of viscoelastic fluid.

This content is only available via PDF.
You do not currently have access to this content.