In the present paper, the influence of vorticity layer on the turbulent separated flow and heat transfer in a cross-flow cavity was experimentally examined. The vorticity layer was generated by a miniturbulator installed in the upstream region of the flow separation point. As the miniturbulator, a small cross-flow rib was used whose height was one order of magnitude smaller than the cavity depth. The variable parameters were the angle of wall inclination in the cavity, the rib height, and the rib-to-cavity separation. The additional vortical disturbances introduced into the recirculation zone were found to exert an appreciable influence on the vortex formation pattern and on the distribution of pressure and heat-transfer coefficients. The experimental data were compared to computation data obtained with the Fluent 6 software. Numerical data on the dynamic and thermal characteristics of flows past a system comprising a sudden pipe expansion and a low-height diaphragm installed in the upstream region of the flow separation point are also presented. It is found that such a diaphragm, used to modify the characteristics of the separated flow, results in a change of the length and intensity of the eddying flow in the separation zone. The vortex sheet produced by the diaphragm interacts with the primary eddy, makes the separation zone more extended, and shifts, even to a greater extent, the point at which the heat-transfer coefficient attains its maximum in the downstream direction. The maximum heat-transfer coefficient turns out to be increased in comparison with undisturbed flow. Both the location of the diaphragm and the diaphragm height strongly affect the heat-transfer characteristics.

This content is only available via PDF.
You do not currently have access to this content.