Clusters of liquid drops growing and moving on physically or chemically textured lyophobic surfaces are encountered in drop-wise mode of vapor condensation. As opposed to film-wise condensation, drops permit a large heat transfer coefficient and are hence attractive. However, the temporal sustainability of drop formation on a surface is a challenging task, primarily because the sliding drops eventually leach away the lyophobicity promoter layer. Assuming that there is no chemical reaction between the promoter and the condensing liquid, the wall shear stress (viscous resistance) is the prime parameter for controlling physical leaching. The dynamic shape of individual droplets, as they form and roll/slide on such surfaces, determines the effective shear interaction at the wall. Given a shear stress distribution of an individual droplet, the net effect of droplet ensemble can be determined using the time averaged population density during condensation. In this paper, we solve the Navier-Stokes and the energy equation in three-dimensions on an unstructured tetrahedral grid representing the computational domain corresponding to an isolated pendant droplet sliding on a lyophobic substrate. We correlate the droplet Reynolds number (Re = 10–500, based on droplet hydraulic diameter), contact angle and shape of droplet with wall shear stress and heat transfer coefficient. The simulations presented here are for Prandtl Number (Pr) = 5.8. We see that, both Poiseuille number (Po) and Nusselt number (Nu), increase with increasing the droplet Reynolds number. The maximum shear stress as well as heat transfer occurs at the droplet corners. For a given droplet volume, increasing contact angle decreases the transport coefficients.

This content is only available via PDF.
You do not currently have access to this content.