A large-eddy simulation (LES) of a buoyant plume past a bluff body is performed. A round heat source is placed at the center of a horizontal flat wall, and a bluff body in the shape of a thick round plate is floating right above the heat source. The modified Rayleigh number based on the total heat input is set at 1.2×1010. On the basis of past studies, the Smagorinsky model is adopted as a subgrid-scale (SGS) model, and a partial slip boundary condition based on the wall law is applied to a horizontal flat wall and a disk surface. The validity of numerical results is ascertained by comparison with theoretical solution and experimental data. The blocking of upward flow and imparting turbulence through a bluff body vary the process of developing a buoyant plume, while properties of a fully developed plume rarely vary. With heat from a bluff body, another buoyant plume is formed near the center, piled with upward flow passing around the bluff body. Moreover, main positions of buoyant production of turbulent kinetic energy move a point from near the side of the bluff body to a point near the central axis. This affects the transition to a fully developed plume in turbulence statistics.

This content is only available via PDF.
You do not currently have access to this content.