Experiments have been conducted into the freezing of water flow and the aqueous solution flow of winter flounder antifreeze protein in a micro-channel of 0.15mm in height, 1.2mm in width and 21mm in length. The local temperature is measured with a sheathed thermocouple of 0.1mm in diameter. Nearly flat interfaces, parallel to the cooling sidewall of the channel, are observed in the case of pure water regardless of flow rate. On the other hand, serrated interfaces are observed in the case of protein solution flow regardless of flow rate. The decreasing rate of the temperature changes when the interface reaches the thermocouple. Around this instant, a slight increase in the temperature is observed due to supercooling release. In the case of local cooling, the interface becomes more serrated as the flow rate increases. This is because the interaction between the interface and the protein continuously approaching the interface due to the flow occurs more frequently with an increase in the flow rate.

This content is only available via PDF.
You do not currently have access to this content.