A test rig was constructed to investigate flow boiling in an electrically heated horizontal mini-channel array. The test section is made of copper and consists of twelve parallel mini-channels. The channels are 1 mm deep, 1 mm wide and 250 mm long. The test section is heated from underneath with six cartridge heaters. The channels are covered with a glass plate to allow visual observations of the flow patterns using a high-speed video-camera. The wall temperatures are measured at five positions along the channel axis with two resistance thermometers in a specified distance in heat flow direction. Local heat transfer coefficients are obtained by calculating the local heat flux. The working fluids are deionised water and ethanol. The experiments were performed under near atmospheric pressure (0.94 bar to 1.2 bar absolute). The inlet temperature was kept constant at 20°C. The measurements were taken for three mass fluxes (120; 150; 185 kg/m2s) at heat fluxes from 7 to 375 kW/m2. Heat transfer coefficients are presented for single phase forced convection, subcooled and saturated flow boiling conditions. The heat transfer coefficient increases slightly with rising heat flux for single phase flow. A strong increase is observed in subcooled flow boiling. At high heat flux the heat transfer coefficient decreases slightly with increasing heat flux. The application of ethanol instead of water leads to an increase of the surface temperature. At the same low heat flux flow boiling heat transfer occurs with ethanol, but in the experiments with water single phase heat transfer is still dominant. It is because of the lower specific heat capacity of ethanol compared to water. There is a slight influence of the mass flux in the investigated parameter range. The pictures of a high-speed video-camera are analysed for the two-phase flow-pattern identification.

This content is only available via PDF.
You do not currently have access to this content.