The bubble homogeneous nucleation in superheated liquid argon is studied by molecular dynamics simulation in NVT ensemble. L-J potential is adopted for the interaction of argon atom. The simulated particle numbers of argon atom is 10976. The non-dimensional size of simulated box is 27.8×27.8×27.8. The initial non-dimensional temperature and density are 0.4 and 0.51 separately. The results show that the bubble homogeneous nucleation is divided into the waiting process, the appearing process of numerous small bubble nucleuses and the aggregation process of small bubble nucleuses. By fitting simulated data, we find that the bubble nucleation rate is eight orders of magnitudes bigger than the result of classic nucleation theory. The bubble nucleation rate increases along with the increasing of density and superheated temperature, which agrees well with one of classic nucleation theory.

This content is only available via PDF.
You do not currently have access to this content.