Abstract
The impact of the vibration absorber on the synchronization region during vortex-induced vibration of turbine blades is investigated. This work is based on a 3DOF model, including a coupled plunge-pitch airfoil motion and a van der Pol oscillator to the fluid-structure interaction caused by the vortex shedding of the incoming flow. The aeroelastic system is increased by a degree of freedom, namely, the vibration absorber. Linear and nonlinear vibration absorbers are used in this investigation to analyze the effectiveness of the vibration absorber. To demonstrate the effect of the resonator on the lock-in, the coupled natural frequencies, numerical frequency responses, and time histories are plotted. The study reveals the promising capability of the absorber to reduce the lock-in region and mitigate the VIV amplitudes within these regions. For the current application, however, the nonlinear absorber response was indifferent compared to its linear counterpart for the given values of coupling coefficients. This observation indicates that a linear absorber efficiently shrinks the lock-in regions and mitigates the VIV in turbomachinery.