Abstract

The advent of additive manufacturing (AM) has enabled the prototyping of periodic and non-periodic metamaterials (a.k.a. lattice or cellular structures) that could be deployed in a variety of engineering applications where certain combinations of performance features are desirable. For example, these structures could be used in a variety of naval engineering applications where light-weight, large surface area, energy absorption, heat dissipation, and acoustic bandgaps are critical. Furthermore, combining the multifunctional design optimization of these structures with progressive degradation due to cyclic fatigue would create attritable systems with tailorable performances not yet in reach by current conventional systems. Nevertheless, in order to deploy these complex geometry structures their multiphysics response has to be well understood and characterized. The objective of the current effort is to describe an initial approach for designing a uniaxial fatigue specimen as the first step toward the design of a multiaxial fatigue test coupon. In order to compare bending- and stretching-dominated structures, two strut-based lattices made of Ti-6Al-4V alloy consisting of the octet and tetrakaidecahedron (or Kelvin) cells are examined. The specimens are designed to fail in the central gauge area where edge effects are minimized. Finite element results of the relevant structural mechanics are used to compare the performance of the four geometries and to evaluate the effect of relative density on fatigue life.

This content is only available via PDF.
You do not currently have access to this content.