Abstract

Additive manufacturing introduces geometric uncertainties on the fabricated strut members of lattice structures. These uncertainties lead to deviations between the simulation result and the fabricated mechanical performance. Although these uncertainties can be characterized and quantified in the existing literature, the generation of a high number of samples for the quantified uncertainties to use in the computer-aided design of lattice structures for different strut diameters and angles requires high experimental effort and computational cost. The use of deep neural network models to accurately predict the samples of uncertainties is studied in this research to address this issue. For the training data, the geometric uncertainties on the fabricated struts introduced by the material extrusion process are characterized from microscope measurements using random field theory. These uncertainties are propagated to effective diameters of the strut members using a stochastic upscaling technique. The relationship between the deterministic strut model parameters, namely the model diameter and angle, and the effective diameter with propagated uncertainties is established through a deep neural network model. The validation data results show accurate predictions for the effective diameter when model parameters are given as inputs. Thus, the proposed model has the potential to use the fabricated results in the design optimization processes without requiring computationally expensive repetitive simulations.

This content is only available via PDF.
You do not currently have access to this content.