Pacing strategies are used in cycling to optimize the power delivered by the cyclist during a race. Gains in race time have been obtained when using these strategies compared to self-paced approaches. For this reason, this study is focused on revising the effect that the variation of the cyclist’s parameters has on the pacing strategy and its results.

A numeric method was used to propose pacing strategies for a cyclist riding on an ascending 3.7 km route with a constant 6.26% road grade. The method was validated and then implemented to study the effect of aerobic and anaerobic power delivery capacity, mass, and drag area on the pacing strategies and their corresponding estimated race times.

The results showed that modifying 1% of the aerobic capacity or cyclist mass value led to a change of 1% on the race time. Modifying 1% the anaerobic capacity and the drag area led to changes of 0.03% and 0.02% on the race time, respectively. These results are strongly dependent on the route characteristics.

It was concluded that for the studied route (constantly ascending), the variation of the cyclist’s aerobic capacity influences the pacing strategy (i.e., the power delivery over the distance). The anaerobic capacity and mass of the cyclist also influence the pacing strategy to a lesser extent.

This content is only available via PDF.
You do not currently have access to this content.