Abstract

This paper demonstrates the use of the polynomial chaos-based Cokriging (PC-Cokriging) on various simulation-based problems, namely an analytical borehole function, an ultrasonic testing (UT) case and a robust design optimization of an airfoil case. This metamodel is compared to Kriging, polynomial chaos expansion (PCE), polynomial chaos-based Kriging (PC-Kriging) and Cokriging. The PC-Cokriging model is a multi-variate variant of PC-Kriging and its construction is similar to Cokriging. For the borehole function, the PC-Cokriging requires only three high-fidelity samples to accurately capture the global accuracy of the function. For the UT case, it requires 20 points. Sensitivity analysis is performed for the UT case showing that the F-number has negligible effect on the output response. For the robust design case, a 75 and 31 drag count reduction is reported on the mean and standard deviation of the drag coefficient, respectively, when compared to the baseline shape.

This content is only available via PDF.
You do not currently have access to this content.