The relationship between rotor-blade aeroelasticity and tip-vortex stability is investigated numerically. An aeroelastic framework based on the free-vortex wake and finite element methods is employed to model a subscaled helicopter rotor in hover and forward-tilted conditions. A linear eigenvalue stability analysis is performed on tip vortices to associate the coupled impact of aeroelastic effects and vortex evolution. Prior numerical investigations have shown that highly flexible wind turbine rotor-blades have the potential to decrease levels of the instability of tip vortices. The present work focuses on testing these findings against a subscaled rotor within the range of helicopter operational rotation frequencies. The presented work aims to develop further insight into rotor-wake interactions and blade-vortex interaction to explore the mitigation of adverse rotorcraft operational conditions, such as their effect on aerodynamic-induced airframe vibrations and the associated life-cycle fatigue performance.

This content is only available via PDF.
You do not currently have access to this content.