Abstract

In this paper, the effect of internal inductance of electromagnetic generators in the field of energy harvesting is discussed. Electromagnetic energy harvesters are typically operated at low frequencies. This results in the generator internal inductor impedance being significantly less than the generator internal resistance. However, at high frequencies, this inductance can no longer be ignored. Therefore, to maximize the harvested power, the internal inductance must be considered while designing the power electronics. This paper presents two methods to tackle this issue. The first method involves making use of a discrete capacitor which is able to reduce the inductance effect not just at resonant frequency but for the entire operating frequency range. The second method makes use of a concept similar to synchronized switching harvesting on inductors (SSHI) in piezoelectric energy harvesting. A capacitor and switch are added in the electromagnetic energy harvesting circuit to reduce the generator internal inductance effect. This method not only provides the benefit of performing well in the entire operating frequency range but also eliminates the need for precise maximum power tracking techniques, which further helps in reducing the circuit losses. Simulation results show a maximum power output increase of 56%.

This content is only available via PDF.
You do not currently have access to this content.