Abstract

The objective of this study is to validate a high-fidelity finite element tire model on hard pavement. In this model, the tire rubber matrix is modeled using locking-free brick elements with embedded thin beam elements along the tire’s circumference, meridian, and diagonals for modeling the tire’s reinforcements (belt, ply and bead). The internal air pressure is applied as a distributed force on the inner surface of the brick elements. Frictional contact between the outer surface of the brick elements and the pavement is modeled using the penalty method along with an asperity based Coulomb friction model. In order to validate the tire model, a medium duty truck tire is modeled and the following response quantities are compared to experimental results: (1) normal load versus deflection at different tire pressures; (2) rolling resistance versus speed; (3) longitudinal force versus slip; (4) lateral force versus slip angle for different normal loads; and (5) self-aligning torque versus slip angle for different normal loads.

This content is only available via PDF.
You do not currently have access to this content.