Rotorcraft-Pilot-Coupling (RPC) is a dynamic phenomenon in which the rotorcraft vibrations are transmitted through the cockpit, the seat and the control inceptors to the helicopter pilot and to the passengers. Handling qualities are affected by the proneness of the of rotorcraft to give rise to adverse interactions, an unwanted quality that can be captured by the so called biodynamic feedthrough. In this work, a multibody model of the whole upper body, developed by the authors, is used in order of evaluate the effects of several parameters influencing cockpit layout design: namely, the pilot seat backrest angle, compliance, and connection to the cockpit floor. As a representative parameter of the flight controls design, the effects related to the characteristics of the trim spring is also investigated. Simulations encompass subjects of different anthropometric data, in order to represent possible intra-subject variations. Biomechanical feedthroughs at the collective and cyclic commands, in response to vertical acceleration inputs, are discussed, along with single-harmonic, high magnitude input responses that highlight the presence and importance of nonlinear effects.

This content is only available via PDF.
You do not currently have access to this content.