Abstract

The size and power limitations in small electronic systems such as wearable devices limit their potential. Significant energy is lost utilizing current computational schemes in processes such as analog-to-digital conversion and wireless communication for cloud computing. Edge computing, where information is processed near the data sources, was shown to significantly enhance the performance of computational systems and reduce their power consumption. In this work, we push computation directly into the sensory node by presenting the use of an array of electrostatic Microelectromechanical systems (MEMS) sensors to perform colocalized sensing-and-computing. The MEMS network is operated around the pull-in regime to access the instability jump and the hysteresis available in this regime. Within this regime, the MEMS network is capable of emulating the response of the continuous-time recurrent neural network (CTRNN) computational scheme. The network is shown to be successful at classifying a quasi-static input acceleration waveform into square or triangle signals in the absence of digital processors. Our results show that the MEMS may be a viable solution for edge computing implementation without the need for digital electronics or micro-processors. Moreover, our results can be used as a basis for the development of new types of specialized MEMS sensors (ex: gesture recognition sensors).

This content is only available via PDF.
You do not currently have access to this content.