Abstract

This paper has proposed a contactless voltage classification method for Lithium-ion batteries (LIBs). With a three-dimensional radio-frequency based sensor called Walabot, voltage data of LIBs can be collected in a contactless way. Then three machine learning algorithm, that is, principal component analysis (PCA), linear discriminant analysis (LDA), and stochastic gradient descent (SGD) classifiers, have been employed for data processing. Experiments and comparison have been conducted to verify the proposed method. The colormaps of results and prediction accuracy show that LDA may be most suitable for LIBs voltage classification.

This content is only available via PDF.
You do not currently have access to this content.