Abstract
This paper proposed a new four-degree-of-freedom dynamic model of the bearing-rotor system based on ball bearing without Raceway Control Hypothesis, and both the inertia forces of balls and the tilting motions of rotor are fully considering in the calculation of restoring forces and moments of ball bearings. Then the dynamic model are solved by the fourth-step Runge-Kutta method, and the dynamic responses of rotor system including the displacement, velocity and center orbits are obtained, and the influences of rotating speeds, eccentricity and symmetry of rotor are studied and analyzed. The results show that both the varying compliance of ball bearing and rotor eccentric force have a great influence on the dynamic responses and motion patterns of bearing-rotor system, and the titling motion of bearing-rotor should be considered in the analysis of asymmetric rotor or the symmetric rotor under some specific conditions.