Abstract

Developed in this work, is a simple and innovative control method, by which a nonminimum-phase (NMP) process can be easily stabilized in a closed-loop setting. The method is named as the parallel feed-forward compensation with derivative effort (PFCD). Through use of a high order process, the control system designed by the PFCD method is shown to be less influenced by noise, disturbance, and model mismatch, compared to other methods. Moreover, the necessary data required for implementing the PFCD method are discussed. The proposed control method is illustrated on tip position control in a slewing beam as a flexible robot arm, in which the effectiveness of the PFCD method is demonstrated. In addition, the proposed control method is compared with the existing methods in terms of stability and performance. The paper is concluded with notes about the advantages.

This content is only available via PDF.
You do not currently have access to this content.