Abstract
This article presents an analytical formula to characterize the damping coefficient in a continuous force model of the direct central impact. The contact force element consists of a linear damper which is in a parallel connection to a spring with Hertz force-deformation characteristic. Unlike the existing models in which the separation condition is assumed to be at the time at which both zero penetration (deformation) and zero force occur, in this study, zero contact force is considered as the separation condition. To ensure that the continuous contact model obtains the desired restitution, an optimization process is performed to find the damping coefficient. The numerical investigations show that the damping coefficient can be analytically expressed as a function of system’s parameters such as the effective mass, penetration speed just before the impact, Hertz spring constant, and the coefficient of restitution.