Abstract
Coupled serial mechanism is a class of mechanisms that couple the relative rotation of successive links utilizing gears or cable-pulley systems. They can be used to generate complex end-effector trajectories or motions with a single actuator. With the employment of Fourier descriptors, a novel approach to integrate type synthesis and dimensional synthesis of such mechanisms is proposed in this paper. Through the Fourier analysis of two arbitrary trajectories from the given motion, the simplest trajectory that contains the least number of harmonic components is identified. Then, characteristic information of those harmonics such as their numbers, amplitudes and initial phases are used to determine the topology and dimensions of the corresponding coupled serial mechanism, thus effectively solving the motion synthesis problem of this type of mechanisms. Finally, three examples are given to demonstrate the validity of the proposed method.