Abstract
We explore unique wave dynamics in a chain of tristable structures, inspired by multistable origami. We specifically focus on the frequency band structure of the chain, and conduct numerical and theoretical analysis. The band gap of the chain can be controlled by switching the stable state of each tristable structure. We also show that if two regions of the chain have different topological properties then wave localization can occur at the interface of the two regions. Interestingly, this interface mode is observed within the band gap. We demonstrate that the interface mode can be altered by leveraging the reconfigurable nature of the tristable structure. Our findings suggest a new strategy for controlling wave propagation in reconfigurable structures, which could be relevant for engineering applications such as energy harvesting.