Robustness, compactness, and portability of tensegrity robots make them suitable candidates for locomotion on unknown terrains. Locomotion is achieved by breaking symmetry and altering the position of center-of-mass to induce “tip-over”. The design of curved links of tensegrity mechanisms allows continuous change in the point of contact (along the curve) as compared to discontinuities in the traditional straight links (point contact) which induces impulse reaction forces during locomotion. The illustrated curve-link tensegrity robot achieves smooth locomotion through internal mass-shifting. Additionally, this tensegrity robot displays folding and unfolding. Introduced is a design methodology for fabricating tensegrity robots of varying morphologies with modular components created using rapid prototyping techniques, including 3D printing and laser-cutting. The techniques are utilized to fabricate simple tensegrity structures, followed by locomotive tensegrity robots in icosahedron and half-circle arc morphologies.

This content is only available via PDF.
You do not currently have access to this content.