Abstract

End-effector tracking for a mobile manipulator is achieved through Sensor Fusion techniques, implemented with a particular visual-inertial sensor suite and an Extended Kalman Filter algorithm. The suite is composed of an Optitrack motion capture system and a Honeywell HG4930 MEMS IMU, for which a further analysis on the mathematical noise model is reported. The filter is constructed in such a way that its complexity remains constant and independent of the visual algorithm, with the possibility of inserting additional sensors, to further improve the estimation accuracy. Experiments in real-time have been performed with the 12-DOF KUKA VALERI robot, extracting the position and the orientation of the end-effector and comparing their estimates with pure sensor measurements. Along with the physical results, issues related to calibration, working frequency and physical mounting are described.

This content is only available via PDF.
You do not currently have access to this content.