This paper introduced a new type of an active suspension named as In-Arm Torsional Electromagnetic Active Suspension (ITEAS) according to its suspension characteristics. The proposed ITEAS is capable of actively controlling body attitude and adjusting the stiffness and damping of a suspension system in a larger scale. The structure of the ITEAS system is composing of a mechanical displacement adjustment device, a two-chamber vane damper connected by an electromagnetic valve, two torsion bars and necessary connection units such as trailing arms. Based on the hydraulic theory and fluid mechanics, the mathematical model of the vane damper was established and the external characteristic curve of the damper was obtained through the simulations. Regarding to the ITEAS stiffness and damping analysis, a quarter dynamic vehicle model was established and simulated by the AMESim platform. The results showed that the automobile ride based on the ITEAS system was reasonable as well as the functions of body height adjustment and suspension controllability were available. Thereafter, a small-scale prototype has been built to calibrate the unknown parameters for further research on ITEAS.

This content is only available via PDF.
You do not currently have access to this content.