Abstract

The Gaussian Process (GP) model has become one of the most popular methods to develop computationally efficient surrogate models in many engineering design applications, including simulation-based design optimization and uncertainty analysis. When more observations are used for high dimensional problems, estimating the best model parameters of Gaussian Process model is still an essential yet challenging task due to considerable computation cost. One of the most commonly used methods to estimate model parameters is Maximum Likelihood Estimation (MLE). A common bottleneck arising in MLE is computing a log determinant and inverse over a large positive definite matrix. In this paper, a comparison of five commonly used gradient based and non-gradient based optimizers including Sequential Quadratic Programming (SQP), Quasi-Newton method, Interior Point method, Trust Region method and Pattern Line Search for likelihood function optimization of high dimension GP surrogate modeling problem is conducted. The comparison has been focused on the accuracy of estimation, the efficiency of computation and robustness of the method for different types of Kernel functions.

This content is only available via PDF.
You do not currently have access to this content.