Clearance is a basic parameter in the design of mechanical products, generally specified as the distance between two shape elements, for example, the width of a slot. This definition is unsuitable for evaluating the clearance during assembly or manufacturing tasks, where the depth information is also critical. In this paper, we propose a novel definition of clearance for the surface of three-dimensional objects. Unlike the typical methods used to define clearance, the proposed method can simultaneously handle the relationship between the width and depth in the clearance, and thus, obtain an intuitive understanding regarding the assembly and manufacturing capability of a product. Our definition is based on the accessibility cone of a point on the object’s surface; further, the peak angle of the accessibility cone corresponds to the clearance at this point. A computation method of the clearance is presented and the results of its application are demonstrated. Our method uses the rendering function of a graphics processing unit to compute the clearance. A large computation time necessary for the analysis is considered as a problem regarding the practical use of this clearance definition.

This content is only available via PDF.
You do not currently have access to this content.