Abstract

The substantial role of additive manufacturing (AM) in fabricating unique geometries is undeniable in the domain of design and manufacturing. However, the successful implementation of AM technologies requires a consistency between the geometric specifications of a component and AM manufacturability capabilities and constraints. Otherwise, AM could result in failed prints and a wasteful use of resources. The goal of this research is to provide geometrically feasible designs for AM processes by rectifying the potentially infeasible geometries. To this end, a novel design modification system is presented that addresses the problematic areas of an AM-infeasible component using appropriate redesign solutions. This system also includes a geometric assessment algorithm which identifies the potential problematic part features using a comprehensive evaluation. Based on the obtained manufacturability feedback, the detected problematic features are then modified through a holistic design modification system. The functionality of the presented system is illustrated using a case study, and the effectiveness of the implemented modification approaches is also demonstrated through an experiment.

This content is only available via PDF.
You do not currently have access to this content.