Abstract
The substantial role of additive manufacturing (AM) in fabricating unique geometries is undeniable in the domain of design and manufacturing. However, the successful implementation of AM technologies requires a consistency between the geometric specifications of a component and AM manufacturability capabilities and constraints. Otherwise, AM could result in failed prints and a wasteful use of resources. The goal of this research is to provide geometrically feasible designs for AM processes by rectifying the potentially infeasible geometries. To this end, a novel design modification system is presented that addresses the problematic areas of an AM-infeasible component using appropriate redesign solutions. This system also includes a geometric assessment algorithm which identifies the potential problematic part features using a comprehensive evaluation. Based on the obtained manufacturability feedback, the detected problematic features are then modified through a holistic design modification system. The functionality of the presented system is illustrated using a case study, and the effectiveness of the implemented modification approaches is also demonstrated through an experiment.