Abstract

Engineering design is usually an iterative procedure where many different configurations are tested to yield a desirable end performance. When the design objective can only be measured by costly operations such as experiments or cumbersome computer simulations, a thorough design procedure can be limited. The design problem in these cases is a high cost optimization problem. Meta model-based approaches (e.g. Bayesian optimization) and transfer optimization are methods that can be used to facilitate more efficient designs. Transfer optimization is a technique that enables using previous design knowledge instead of starting from scratch in a new task. In this work, we study a transfer optimization framework based on Bayesian optimization using Gaussian Processes. The similarity among the tasks is determined via a similarity metric. The framework is applied to a particular design problem of thin film solar cells. Planar multilayer solar cells with different sets of materials are optimized to obtain the best opto-electrical efficiency. Solar cells with amorphous silicon and organic absorber layers are studied and the results are presented.

This content is only available via PDF.
You do not currently have access to this content.