In surgical settings, infectious particulate wound contamination is a recognized cause of post-operative infections. Powered air-purifying respirators (PAPRs) are widely used by healthcare workers personal protection against infectious aerosols. Healthcare infection preventionists have expressed concern about the possibility that infectious particles expelled from PAPR exhalation channels could lead to healthcare associated infections, especially in operative settings where sterile procedural technique is emphasized.

This study used computational fluid dynamics (CFD) modeling to simulate and visualize the distribution of particles exhaled by the PAPR wearer. In CFD simulations, the outward release of the exhaled particles, i.e., ratio of exhaled particle concentration outside the PAPR to that of inside the PAPR, was determined. This study also evaluated the effect of particle sizes, supplied air flow rates, and breathing work rates on outward leakage.

This simulation study for the headform and loose-fitting PAPR system included the following four main steps: (1) preprocessing (establishing a geometrical model of a headform wearing a loose-fitting PAPR by capturing a 3D image), (2) defining a mathematical model for the headform and PAPR system, and (3) running a total 24 simulations with four particle sizes, three breathing workloads and two supplied-air flow rates (4 × 3 × 2 = 24) applied on the digital model of the headform and PAPR system, and (4) post-processing the simulation results to visually display the distribution of exhaled particles inside the PAPR and determine the particle concentration of outside the PAPR compared with the concentration inside. We assume that there was no ambient particle, and only exhaled particles existed. The results showed that the ratio of the exhaled particle concentration outside to inside the PAPR were influenced by exhaled particle sizes, breathing workloads, and supplied-air flow rates. We found that outward concentration leakage from PAPR wearers was approximately 9% with a particle size of 0.1 and 1 μm at the light breathing and 205 L/min supplied-air flow rates, which is similar to the respiratory physiology of a health care worker in operative settings, The range of the ratio of exhaled particle concentration leaking outside the PAPR to the exhaled particle concentration inside the PAPR is from 7.6% to 49. We found that supplied air flow rates and work rates have significant impact on outward leakage, the outward concentration leakage increased as particle size decreased, breathing workload increased, and supplied-air flow rate decreased. The results of our simulation study should help provide a foundation for future clinical studies.

This content is only available via PDF.
You do not currently have access to this content.