Abstract

The development of advanced additive manufacturing (AM) and material processing techniques is currently a topic of great interest to broad communities of scientists and engineers. In particular, there is a need for AM processes capable of producing functional and high-quality components at a faster rate than is currently achievable. In response to this demand, the present work introduces the initial steps of a novel spatially-resolved and selective approach for processing volumetric regions of ceramic materials. The proposed method utilizes microwave radiation to heat material at desired locations within a domain filled with ceramic powder. Using this principle of operation, a number of methods for implementation of this process are proposed. As a first step, a multiphysics computational methodology and an associated model that allows for the analysis and design of relevant processing systems is introduced. Additionally, a number of simulations demonstrating the feasibility of the proposed methodology are presented. Based on these preliminary results, we conclude with a discussion of ongoing and future efforts to fully realize this technology.

This content is only available via PDF.
You do not currently have access to this content.