With the development of Fused Deposition Modeling (FDM) technology, the quality of fabricated parts is getting more attention. The present study highlights the predictive model for dimensional accuracy in the FDM process. Three process parameters, namely extruder temperature, layer thickness, and infill density, are considered in the model. To achieve better prediction accuracy, three models are studied, namely multivariate linear regression, Artificial Neural Network (ANN), and Support Vector Regression (SVR). The models are used to characterize the complex relationship between the input variables and dimensions of fabricated parts. Based on the experimental data set, it is found that the ANN model performs better than the multivariate linear regression and SVR models. The ANN model is able to study more quality characteristics of fabricated parts with more process parameters of FDM.

This content is only available via PDF.
You do not currently have access to this content.