This work presents a Procedural Content Generation (PCG) method based on a Neural Network Reinforcement Learning (RL) approach that generates new environments for Virtual Reality (VR) learning applications. The primary objective of PCG methods is to algorithmically generate new content (e.g., environments, levels) in order to improve user experience. Researchers have started exploring the integration of Machine Learning (ML) algorithms into their PCG methods. These ML approaches help explore the design space and generate new content more efficiently. The capability to provide users with new content has great potential for learning applications. However, these ML algorithms require large datasets to train their generative models. In contrast, RL based methods take advantage of simulation to train their models. Moreover, even though VR has become an emerging technology to engage users, there have been few studies that explore PCG for learning purposes and fewer in the context of VR. Considering these limitations, this work presents a method that generates new VR environments by training an RL agent using a simulation platform. This PCG method has the potential to maintain users’ engagement over time by presenting them with new environments in VR learning applications.

This content is only available via PDF.
You do not currently have access to this content.