In this study the dynamic and electrical performance of a novel hybrid Electromagnetic-Triboelectric energy harvester is studied. The mechanism incorporates a linear tubular electromagnetic (EMG) transducer as well as a free-standing grating triboelectric (TENG) transducer. The heaving of the slider inside the stator triggers both EMG and TENG which results in electricity generation. The dynamic model of the system is firstly developed and the system response under external excitation is carried out. Then, the electrical output characteristics of each harvesting unit are developed based on the dynamic response. Then, the effects of various parameters such as frequency of excitation and external electrical load on the output performance of the harvester including voltage, current, and power density of the EMG and TENG units are investigated. This study provides a guideline toward the design and analysis of novel mechanical energy harvesters.

This content is only available via PDF.
You do not currently have access to this content.