We describe a method for extending the load range of a vibration isolator using a foldable cylinder consisting of a twist buckling pattern (Kresling’s Pattern), and evaluate the vibration isolating performance through excitation experiments. In a previous study, it was determined that the foldable cylinder is bistable and acts as a vibration isolator with nonlinear characteristics in a displacement region where the spring stiffness is zero. Its spring characteristics and vibration isolating performance were clarified by numerical analysis and excitation experiments, and indicated that vibration in a certain frequency range is reduced where the spring stiffness is zero. However, this vibration isolator has a disadvantage in that it can only support an initial load that transfers to the zero-spring-stiffness region. Therefore, in this research, we improve the design variables of the isolator and the position of the linear spring attached to the isolator. As a result, the initial load range is extended by two to three times that of the conventional vibration isolator. Furthermore, the isolating performance is maintained even when the initial load is changed within a given load range.

This content is only available via PDF.
You do not currently have access to this content.