This paper deals with a second-order perturbation analysis of the in-plane dynamic responses of both tuned and mistuned three-blade-hub horizontal-axis wind-turbine equations. The blades are under effect of gravitational and cyclic aerodynamics forces and centrifugal forces. Although the blades and hub equations are coupled, they can be decoupled by changing the independent variable from time to rotor angle and by using a small parameter approximation. A second-order method of multiple scales is applied in the rotor-angle domain to analyze in-plane blade-hub dynamics. A superharmonic resonance case at one third the natural frequency was revealed. This resonance case was not captured by a first-order perturbation expansion. The relationship between response amplitude and frequency is studied. The effect of blade mistuning on the coupled blade-hub dynamics are taken into account.

This content is only available via PDF.
You do not currently have access to this content.