In this paper, an efficient and accurate computational method for determining responses of high-dimensional bilinear systems is developed. Predicting the dynamics of bilinear systems is computationally challenging since the piecewise-linear nonlinearity induced by contact eliminates the use of efficient linear analysis techniques. The new method, which is referred to as the hybrid symbolic-numeric computational (HSNC) method, is based on the idea that the entire nonlinear response of a bilinear system can be constructed by combining linear responses in each time interval where the system behaves linearly. The linear response in each time interval can be symbolically expressed in terms of the initial conditions. The transition time where the system switches from one linear state to the other and the displacement and velocity at the instant of transition are solved using a numerical scheme. The entire nonlinear response can then be obtained by joining each piece of the linear response together at the transition time points. The HSNC method is based on using linear features to obtain large computational savings. Both the transient and steady-state response of bilinear systems can be computed using the HSNC method. Thus, nonlinear characteristics, such as subharmonic motion, bifurcation, chaos, and multistability, can be efficiently analyzed using the HSNC method. The HSNC method is demonstrated on a single degree of freedom system and a cracked cantilever beam model, and the nonlinear characteristics of these systems are examined.

This content is only available via PDF.
You do not currently have access to this content.