We study the dynamic behavior of a belt-drive system to explore the effect of operating conditions and system moment of inertia on the generation of waves of detachment (i.e., Schallamach waves) at the belt-pulley interface. A self-excitation phenomenon is reported in which frictional fluctuations serve as harmonic forcing of the pulley, leading to angular velocity oscillations which grow in time. This behavior depends strongly on operating conditions (torque transmitted and pulley speed) and system inertia, and differs between the driver and driven pulleys. A larger net torque applied to the pulley generally yields more remarkable stick-slip oscillations with higher amplitude and lower frequency. Higher driving speeds accelerate the occurrence of stick-slip motion, but have little influence on the oscillation amplitude. Contrary to our expectations, the introduction of flywheels to increase system inertia amplified the frictional disturbances, and hence the pulley oscillations. This does, however, suggest a way of facilitating their study, which may be useful in follow-on research.

This content is only available via PDF.
You do not currently have access to this content.