The determination of the finite mobility of a linkage boils down to the analysis of its configuration space (c-space). Since a global analysis is not feasible in general (but only for particular cases), the research focused on methods for a local analysis. Past research has in particular addressed the approximation of finite curves in c-space (i.e. finite motions). No universal method for the approximation of the c-space itself has been reported. In this paper a generally applicable formulation of the equations defining the higher-order local approximation of the c-space as well as the set of points where the Jacobian has a certain rank are presented. To this end, algebraic formulations of the higher-order differential of the constraint mapping (defining the loop closure) and of the Jacobian minors of arbitrary order are introduced. The respective local approximation is therewith given in terms of a low-order polynomial system. Results are shown for a simple planar 4-bar linkage and a planar three-loop linkage. Since the latter exhibits a cusp singularity it cannot be treated by the local analysis methods proposed thus far, which are based on approximating finite curves.

This content is only available via PDF.
You do not currently have access to this content.