While 6-leg, 6 DOF parallel robots offer advantages over serial mechanisms in many applications, they suffer from mobility limitation pertaining to both the maximum extension of links and link interference. The latter of these can be mitigated by a reduction of the number of links in the mechanism. The end-effector’s degrees of freedom are maintained by adding controllable degrees of freedom to the remaining legs. This paper presents a prototype of a previously proposed 3-leg, 6-DOF parallel robot. A measure of its workspace is also shown and compared to that of a similarly sized 6-leg parallel mechanism. Analysis of partial derivatives of Cartesian points with respect to joint angles is also explored to give a metric of expected performance in different regions of workspace.

This content is only available via PDF.
You do not currently have access to this content.